如何用matlab解微分方程
下面就是小编带给大家的如何用matlab解微分方程方法操作,希望能够给你们带来一定的帮助,谢谢大家的观看。
操作方法
- 01
在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数 dsolve 用来解决常微分方程(组)的求解问题,调用格式为 X=dsolve(‘eqn1’,’eqn2’,…)系统缺省的自变量为 t。
- 02
函数 dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,将其统称为 solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0)。
- 03
说明:solver 为命令 ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i 之一。odefun 是显示微分方程 y ' = f (t , y) 在积分区间 tspan = [t 0 , t f ] 上从 t0 到 t f 用初始条件 y0 求解。
- 04
如果要获得微分方程问题在其他指定时间点 t 0 , t1 , t 2 , , t f 上的解,则令tspan = [t 0 , t1 , t 2 , t f ] (要求是单调的)。因为没有一种算法可以有效的解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 solver,对于不同的 ODE 问题,采用不同的 solver。
- 05
在 matlab 命令窗口、程序或函数中创建局部函数时,可用内联函数 inline,inline 函数形式相当于编写 M 函数文件,但不需编写 M-文件就可以描述出某种数学关系.调用 inline 函数。
- 06
只能由一个 matlab 表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用 inline 函数,inline 函数的一般形式为: FunctionName=inline(‘函数内容’, ‘所有自变量列表’) 。