全站仪任意点架设仪器测高程的各种方法
本人常用的方法是架设仪器到任意点(高程坐标均未知)1、将仪器高输为0,棱镜高为1.2m(实际棱镜的高度)。2、测出后视已知点和架设仪器点的高差。3、用后视已知点高程+、-测量出的高差得出一高程,将此高程输入到仪器的测站点高程,仪器高继续为0。返测后视点,OK,进行现场抄平。
经典方法
- 01
说这个方法是经典方法,是因为: 1.其测量原理我们在学习经纬仪视距测量时就学习过,每种测量教材中都有; 2.测量教材中有关全站仪高程测量原理,都按此原理进行阐述; 3.全站仪高程测量的相关设置,都按此原理进行的。 到底什么测量原理呢,我们来回顾一下,看下图:
- 02
我们从(1)式中可以发现,全站仪一旦设站完成,测站高程和仪器高度均为定值,若测量过程中不改变棱镜高度,则除了Ssina(即实测参数)外,等式右侧其它各参数之和均为恒等值,由此我们可以得出: 全站仪一旦设定,同时不再改变棱镜高度的话,全站仪对各点的测量高差,其实质是每个三角高差dZ的差值
- 03
这个结论我们先记住,它将是后面方法二和方法三的理论基础。
方法二:后方交会
- 01
说实话,我也不知道叫“后方交会”是否准确,因为这个名字一般是指:在全站仪平面测量时,全站仪自由设站,通过测量并输入测站外两个已知点的平面坐标,从而完成设站的工作。 而这里是指全站仪在高程测量前,全站仪自由设站,通过测量测站外一个已知高程点,再通过全站仪相关的设置,从而完成全站仪高程测量设站的工作。 我们还是继续对照着这张老图进行分析:
方法三:对边测量
- 01
方法三的测量方法是一个纯粹的高差测量,操作也相当简单:全站仪架设在任意位置,不做任何高程测量的设置(即测站高程、仪器高、棱镜高均使用仪器内存值),分别对两个点测量其三角高差dZ(要保证棱镜高度不变),两者之差即为两点之高差,跟水准测量的后视减前视相反,这里应该是前视减后视。其测量原理,在方法一中已经验证,在此不再赘述。 各种方法的适用情况: 方法都出来了,都有测量原理,都是可行的,如果硬要说哪种方法好,本身这个问题就是个伪问题,因为每种方法各有优势,如果不结合实际情况,便不能确定到底哪种方法要好。因此最后来谈谈各种方法的优势和不足,以及它们的适用情况。
总结对比
- 01
方法一是经典方法,原理明确,地球人都知道,而且全站仪的高程测量设置也是据此设置和计算,操作时按部就班,不容易出错,很多人都喜欢用它。缺点是,仪器高度量取时误差较大,因此比较适用于初学者(按原理操作),以及对高程精度要求不是很高的情况(比如路基填挖施工)。改进的方法也有,正如很多网友说的,设置完成后,对后视已知高程点进行检验的时候,根据测量值和已知值的差异情况,调整仪器高度,直至差异小到满足要求为止。
- 02
方法二的优点是能在任意点上设站,不需要知道测站点高程而进行高程的测量,这个非常适用于进行三维测量时,平面也同时自由设站的情况,因此使用非常灵活,适应性强。缺点是设置的时候,不是按照参数的原意进行设置,比如输入测站高程,需要输入后视点高程,输入仪器高度时,输入测量三角高差的反号值等等。而且,根据“测站高程+仪器高-棱镜高”为恒等值的原理,实际操作中参数输入有无数种组合,比如: 1.后视点高程—>测站高程,后视点三角高差反号—>仪器高,0—>棱镜高 2.后视点高程-后视点三角高差—>测站高程,0—>仪器高,0—>棱镜高 3.后视点高程—>测站高程,0—>仪器高,后视点三角高差—>棱镜高
- 03
方法三的特点是,避免了啰嗦的全站仪高程测量设置,神马都不用,只在距离测量模式中读取各点的三角高差dZ,通过各点dZ之差计算各点高差,跟水准测量类似,甚至可以直接使用水准测量的记录表格。不足之处在于不能直接测量获取各测点高程,还得象水准测量计算那样进行下一步的推算。因此,方法三如果用于地形碎部点测量、路基施工放样等情形就麻烦多了,但方法三可适用于水准路线的测量,以及在一个测站不需测量多个测点的情形。