spss教程:因子分析

研究问题时尽可能多的收集资料,便于对问题有充分了解,这样确实便于全面、精确地描述事物,实际数据建模中,有些变量不一定可以真正发挥作用,还可能加大计算工作量,所以要因子分析。
对于高纬变量和海量数据是不可忽略的问题。收集到的变量数据通常之间存在一定的相关性,变量间的信息高度重叠和高度相关给统计方法带来困难,例如,在多元线性回归分析中,若变量之间有较强的相关性,则会对回归方程参数估计带来困难,致使参数不准确,模型不可用。

操作方法

  • 01

    因子相关性的检验:方法有相关系数矩阵、反映像相关矩阵、巴特利特球度检验、KMO检验。

  • 02

    因子提取和因子载荷矩阵的求解:基于主成分模型的主成分分析法、基于因子分析模型的主轴因子法、极大似然法、最小二乘法、a因子提取法、映像分析法。主成分分析法能够为因子分析提供初始解,因子分析是主成分分析结果的延伸和拓展。

  • 03

    因子命名、旋转:在因子载荷矩阵中,多行情况,遇到变量与多个因子有较大的相关关系,即变量需要多个因子共同解释;多列情况,一个因子可以同时解释多个变量。说明一个因子不能单独代表原有的一个变量,因子模糊不清,而实际情况是对因子有清醒认识,所以因子旋转。必不可少,尽量使一个变量在较少的几个因子上有比较高的载荷。

  • 04

    输出结果分析: 1)借助相关系数矩阵、反映像相关矩阵、巴特利特球度检验和KMO检验方法分析。观察大部分相关系数都较高,线性关系较强,可以提取公共因子,适合因子分析。在KMO中,概率为0.000小于显著性水平,拒绝原假设,与单位矩阵有显著差异,KMO为0.882,说明适合因子分析。 2)每组的列向量含义,特征值、方差贡献率、累计方差贡献率。第二列表示提取两个因子,共同解释84.259%,丢失的信息较少。第三列表示旋转后的因子,总的方差贡献率没有改变,就是说没有影响原有的共同度,重新分配各个因子解释原有变量的方差,改变各个因子的方差贡献率。 3)碎石图:纵坐标为特征值,横坐标为因子个数。特征值越小则对原有变量的贡献很小,可以忽略,所以提取两个也算是可以的。 4)成分矩阵:结果是某个变量等于两个因子与对应系数相乘后相加的结果。观察可知,第一个因子与所有变量的相关性程度高,与第二个不高,含义模糊,不利于命名,所以因子要旋转。 5)因子命名解释:采用方差极大法对因子载荷矩阵实行正交旋转以使因子具有命名解释性。可以指定按照第一因子载荷降序的顺序输出旋转后的因子载荷。见图,联营、股份、集体、国有在第一因子有较高载荷,可解释为内部投资经济单位,其他、外商、港澳在第二个的载荷高,解释为外来投资经济单位。观察因子协方差矩阵,两个因子的线性相关性几乎没有,符合因子分析的效果。

(0)

相关推荐

  • spss教程:曲线估计

    在回归分析中,变量之间的关系不一定是线性关系,非线性也是比较常见的.非线性关系分为本质线性关系(变量关系形式上虽然呈现非线性关系,但可通过变量变换为线性关系)和本质非线性关系. 在spss中,先通过散 ...

  • spss教程:两独立样本的非参数检验

    在对总体分布不了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体分布是否存在显著性差异.Spss提供多种两独立样本的非参数检验方法.其中包括曼-惠特尼U检验.K-S检验.W-W游程检验.极 ...

  • spss教程:线性回归分析

    本节内容主要介绍如何确定并建立线性回归方程.线型回归包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归,此处以多元线型为例进行介绍. 步骤1--前期数据准备处理 01 数据导入.以本案为 ...

  • spss教程:两配对样本的非参数检验

    通过对两组配对样本的分析,推断样本来自的两个总体的分布是否存在显著性差异.检验方法包括McNemar检验.符号检验.Wilcoxon符号秩检验. McNemar检验分析的变量是二值变量,实际情况下,如 ...

  • spss教程:层次聚类之Q型聚类

    聚类分析是一种建立分类的多元统计分析方法,它能够将以批样本(或变量)数根据其诸多特征,按照在性质上的亲疏程度关系在没有先验知识的情况下进行自动分类,产生多个分类结果.类内部个体特征具有相似性,不同类间 ...

  • spss教程:相关分析

    关系有函数关系.统计关系.相关分析的方法比较多,常用的有散点图,还有相关系数.相关系数可以数值的方式精确的反应两个变量间线性关系的强弱,样本相关系数为r,|r |≥0.8认为高度相关, 0.5≤| r ...

  • spss教程:复相关系数

    一个要素或变量同时与几个要素或变量之间的相关关系.复相关系数是度量复相关程度的指标,它可利用单相关系数和偏相关系数求得.复相关系数越大,表明要素或变量之间的线性相关程度越密切. 操作方法 01 复相关 ...

  • spss教程:单样本非参数检验

    参数检验是在总体分布形式已知的情况下,对总体分布的参数进行推断,但如果不正确了解总体分布形态,参数估计就不适用,非参数检验正是用于此类情况的. 单样本非参数检验是对单个总体的分布进行推断的方法,方法包 ...

  • spss教程:协方差分析

    实际中,不少因素是很难人为控制的,它们的不同水平确实对观察变量产生了较为显著的影响,如果忽略这些因素,直接简单的分析其他因素对观察变量的影响,使分析结果不正确.为更加准确的研究控制变量的不同水平对观察 ...